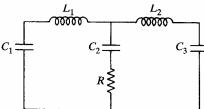
OKLAHOMA STATE UNIVERSITY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING


ECEN 3723 Systems I Spring 2003 Midterm Exam #2

Choo <i>Please speci</i>	•	five probl <i>l below to</i>	
		; 4)	
Name:			
Student ID:	:		
E-Mail Address:_			

Problem 1:

Consider the electric circuit shown below. Using the force-current analogy to derive an *analogous* mechanical system. Show the detailed procedure and the resulted mechanical diagram.

Problem 2:
Evaluate
$$\lim_{k\to\infty}\sum_{i=0}^k ie^{-2i}$$
.

Problem 3:

Problem 3: Find x(k), the inverse z-transform of $X(z) = \ln\left(\frac{2z}{2z-1}\right)$.

Problem 4:

Given z transform of $k^5 5^k u(k)$ is X(z), find the y(k), such that $Y(z) = \frac{1}{z} X(2z)$.

Problem 5:

The input x(k) = u(k) - 2u(k-2) + u(k-4) is applied to a linear time-invariant discrete-time system. The resulting response with no initial energy is y(k) = ku(k) - ku(k-4). Determine the impulse response function of the system, h(k).